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ABSTRACT

Blum-Blum-Shub (BBS) is a (probabilistically) secure pseudorandom bit/number generator
which outputs a sequence by repeatedly reducing squares modulo the product of two Blum-
primes. Our goal for this thesis is to modify the algorithm by using a modulus which
is the product of three Blum-primes. We evaluate the e�ect of this modification using
the suite of tests from National Institute of Standards and Technology (NIST). Previous
research has evaluated the limit on the number of least important bits that can be extracted
per iteration of the BBS algorithm while still maintaining the pseudorandom properties.
In this paper, we go beyond the proposed limit and compare the modified BBS with the
original BBS using the NIST tests. This paper also discusses the cryptosystem based on
the modified BBS as well as the original BBS. We use three metrics for the comparison of
performance: the type of tests, the overall performance of sequences against NIST tests,
and the time to generate sequences. Our test data shows that both versions performed in a
similar manner when subjected to NIST tests. Furthermore, bit generation is significantly
faster for sequences generated by taking the last 50 bits or more, while still maintaining
pseudorandom properties.

v



THIS PAGE INTENTIONALLY LEFT BLANK

vi



Table of Contents

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Blum-Blum-Shub 5
2.1 Blum-Blum-Shub Pseudorandom Bit Generator . . . . . . . . . . . . 5
2.2 BBS as a Cryptosystem . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Elementary Number Theory . . . . . . . . . . . . . . . . . . . . 8
2.4 Our Modification of BBS . . . . . . . . . . . . . . . . . . . . . 12
2.5 Modified BBS: Using 2 Blum-Primes and 1 Non Blum-Prime . . . . . . 13

3 Methodology 15
3.1 Codes and Testing . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Tests for Randomness . . . . . . . . . . . . . . . . . . . . . . 18

4 Test Results 25
4.1 The Last Bit . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Last 3 Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 Last 4 Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.4 Last 5 Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.5 Last 10 Bits . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.6 Last 50 Bits . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.7 Last 100 Bits . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.8 All Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.9 Comparison Based on Time Required to Generate the Sequences . . . . . 36

5 Conclusion and Future Work 39
5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . 40

vii



Appendix: BBS Test Programs Written in Python 41
A.1 The Main Interface: mainbbs.py . . . . . . . . . . . . . . . . . . 41
A.2 Blum-Prime Generator: primes.py . . . . . . . . . . . . . . . . . 44
A.3 NIST Tests: randtest.py . . . . . . . . . . . . . . . . . . . . . 46

List of References 63

Initial Distribution List 65

viii



List of Figures

Figure 4.1 The Last Bit: Side-by-Side Comparison by Tests . . . . . . . . . 26

Figure 4.2 The Last Bit: Overall Performance by Sequences . . . . . . . . . 26

Figure 4.3 Last 3 Bits: Side-by-Side Comparison by Tests . . . . . . . . . . 27

Figure 4.4 Last 3 Bits: Overall Performance by Sequences . . . . . . . . . . 28

Figure 4.5 Last 4 Bits: Side-by-Side Comparison by Tests . . . . . . . . . . 29

Figure 4.6 Last 4 Bits: Overall Performance by Sequences . . . . . . . . . . 29

Figure 4.7 Last 5 Bits: Side-by-Side Comparison by Tests . . . . . . . . . . 30

Figure 4.8 Last 5 Bits: Overall Performance by Sequences . . . . . . . . . . 31

Figure 4.9 Last 10 Bits: Side-by-Side Comparison by Tests . . . . . . . . . 31

Figure 4.10 Last 10 Bits: Overall Performance by Sequences . . . . . . . . . 32

Figure 4.11 Last 50 Bits: Side-by-Side Comparison by Tests . . . . . . . . . 33

Figure 4.12 Last 50 Bits: Overall Performance by Sequences . . . . . . . . . 33

Figure 4.13 Last 100 Bits: Side-by-Side Comparison by Tests . . . . . . . . . 34

Figure 4.14 Last 100 Bits: Overall Performance by Sequences . . . . . . . . 34

Figure 4.15 All Bits: Side-by-Side Comparison by Tests . . . . . . . . . . . . 35

Figure 4.16 All Bits: Overall Performance by Sequences . . . . . . . . . . . 36

Figure 4.17 Average Time to Generate a Million-Bit Sequence . . . . . . . . 36

ix



THIS PAGE INTENTIONALLY LEFT BLANK

x



List of Acronyms and Abbreviations

NPS Naval Postgraduate School

PRBG Pseudorandom Bit Generator

TRBG True Random Bit Generator

CRT Chinese Remainder Theorem

BBS Blum-Blum-Shub Pseudorandom Bit Generator

NIST National Institute of Standards and Technology

xi



THIS PAGE INTENTIONALLY LEFT BLANK

xii



Executive Summary

This thesis concentrates on a modification of the classical Blum-Blum-Shum pseudorandom
number generator, which is known to be probabilistically secure. The Blum-Blum-Shum
pseudorandom number generator algorithm begins by choosing a modulus n that is the
product of two large primes p, q ⌘ 3 (mod 4) and a seed x0, and recursively generates a
new bit xn+1 = x2

n (mod n). We modify the Blum-Blum-Shub pseudorandom bit generator
(BBS), by taking the the modulus for the algorithm as a product of three Blum-primes of
the same size, a seed x0 and the same recursion as in the classical case.

We start by comparing the two versions of BBS. In order to do so, we use a Python
program to generate a bit sequence of desired length for both versions of the algorithm.
The generated sequences are tested for randomness properties using a suite of tests from
the National Institute of Standards and Technology (NIST). BBS, in its native form, extracts
only the parity bit per iteration of the algorithm. Hence, the number of iterations equals the
length of the desired bit sequence. Previous research by Vazirani and Vazirani shows that up
to log log N bits can be extracted per iteration of BBS, where N is the size of the modulus
[1], and the obtained sequence remains secure (probabilistically). Given our chosen length
for both versions of the algorithm, this limit is up to nine bits per iteration. In our thesis, we
extract a number of bits beyond this theoretical limit and show that the obtained sequence
still passes, with high probability, the NIST tests.

For a detailed comparison, we gather samples in eight categories for both versions, where
a category corresponds to the number of bits extracted per iteration (the last bit, the last 4
bit, the last 5 bit, the last 10 bit, the last 50 bit, the last 100 bit, and all bits, respectively).
Each category is comprised of 200 samples of sequences, approximately one million bits in
length.

The generated sequences are tested using the NIST randomness tests, which output numer-
ical values for each sequence, we determine whether or not it satisfies the requirements set
forth in the standard. Along with the NIST tests, we also investigate the time required to
generate the sequences for all categories. The data for the time requirement focuses on the
e�ect on time as the amount of bits extracted per iteration increases.
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For a whole picture, we are interested to see if the randomness properties degrade (or not)
as we extract more bits per iteration as well.

The comparison between the original and the modified BBS is done using three metrics. The
first comparison is based on the performance in each test, the second comparison is based
on the overall performance of each sequence against NIST tests, and the third comparison
is based on the time required to generate the sequences by both versions, of roughly one
million bits in length, for each category.

In our comparison based on performance in each test, the data suggested that both versions
performed with a pass-rate of 95 percent or higher in each of the 14 NIST tests. Looking at
the overall performance of each sequence, the data again shows that both versions performed
in a similar manner. For both versions, within each category, 70 to 80 percent of sequences
passed all of the NIST tests.

For our third comparison, the time required to generate a sequence of one million bits
came closer for both versions as we extracted 50 bits or more per iteration. In addition,
the time required to generate a one million bit sequence decreased by 90 percent or higher
as compared to the initial time for extracting only the parity bit per iteration. During this
process, the data, from NIST tests, also suggested that the pseudo-randomness properties
for sequences generated did not degrade as the extracted bits per iteration increased.

Additionally, we also introduce a cryptosystem based on the original and the modified BBS.
Although not many details are included here (a paper is forthcoming), we make an e�ort to
show how our public key cryptosystem functions.

References
[1] U. V. Vazirani and V. V. Vazirani, “E�cient and Secure Pseudo-Random Number Gener-
ation,” in Workshop on the Theory and Application of Cryptographic Techniques. Heidel-
berg: Springer, 1984, pp. 193–202.
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CHAPTER 1:
Introduction

Cryptography is a part of our daily lives. Many digital communications require secrecy and
authentication over open channels such as the Internet. Every day, we use the world wide
web for activities such as checking the news or looking up food recipes. Encryption is not
required during such low risk activities. However, activities such as online banking requires
additional safeguards in order to protect against malicious activities, given the fact that our
personal and financial information is at stake. These days, there are a myriad of reasons why
people want to secure their online activity. Governmental and non-governmental agencies,
commercial and non-profit enterprises, as well as the general public all rely on the security,
of which cryptography is an intrinsic part. Encryption is the process of transforming data,
in the form of plaintext, into ciphertext using a mathematical algorithm. The ciphertext can
then be securely transmitted. At the destination, the intended recipient can subsequently
perform decryption which in turn transforms the ciphertext back into plaintext.

In modern cryptography, the security of the encryption scheme should not be based on
keeping the algorithm secret. Kerckho�s’s principle tells us to assume that the encryption
scheme itself is public knowledge, while only the key remains secret [1]. The encryption
scheme is supposed to provide perfect secrecy, that is, only the intended parties can encrypt
or decrypt the communications. Claude Shannon defined perfect secrecy as a system
where the correlation between the ciphertext and the plaintext is not visible, that is, all
keys are equiprobable [2]. In many cryptographic systems, the encryption scheme uses
an algorithm to produce a string of 1’s and 0’s that appear random. Such a string is
called a pseudorandom bit sequence (it is deterministic). This string is then mathematically
combined with the plaintext in order to produce the ciphertext. In order to ensure that the
ciphertext does not show any correlation to the plaintext, we need to produce a binary string
where the bits do not exhibit any patterns which might help an adversary gain insight into
the mathematical algorithm which produced them. This in turn requires a good algorithm.

In order to achieve strong encryption, a random bit sequence is required. A truly random
bit sequence does not show any pattern among the generated bits that could in any way help
an adversary decrypt the ciphertext. Such random sequences can be obtained by observing
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atmospheric noises, radioactive decay, and other natural phenomena, which produce non-
deterministic outputs. In cryptography the problem we face is that we are surrounded by
only a finite number of random natural phenomena and using these phenomena to generate
random bit sequences is slow and ine�cient. For a practical encryption process, we require
alternative ways of generating such sequences that appear random but can be generated
quickly. In particular, we need a deterministic algorithm, which generates pseudorandom
bit sequences without any observable patterns.

In this thesis, we will discuss pseudorandom bit generators (PRBG). In particular, we will
focus on a PRBG called Blum-Blum-Shub (BBS) and we propose a modification to this
original idea. We will generate bit sequences using the original BBS as well as the modified
BBS and subsequently subject them to a battery of randomness tests developed by the
National Institute of Standards and Technology.

1.1 Background
In this section, we will discuss the characteristics and importance of true and pseudoran-
domness. An example of true randomness is a fair coin toss. A fair coin toss is a simple and
commonly used example when defining unpredictability and the probability of guessing
outcomes. When a fair coin is tossed, the probability of getting heads or tails is 50/50.
This means that no matter how many times the coin is tossed, the likelihood of correctly
predicting the next outcome is equal to the likelihood of making an incorrect prediction.
Next, we discuss the true-random bit generator (TRBG) and its properties.

1.1.1 True-Random Bit Generator
A true-random generator makes use of the entropy present in natural phenomena to create
a truly random binary sequence [3]. The bits in such a string are produced using a non-
deterministic process [4]. However, for cryptographic implementations, true-random bit
generators may not be a good fit as they require almost instantaneous access to the random
bits while encrypting the data. Though preferred, our access to true-random sequences
generated by TRBGs are limited for cryptographic use. Next, we discuss alternatives to the
TRBG.
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1.1.2 Pseudorandom Bit Generator

A pseudorandom bit generator (PRBG) is a deterministic algorithm which, given a binary
input, outputs a random-appearing binary bit sequence [5]. PRBGs are used in many
applications, both secure and insecure. In both cases, the output must appear to be random.
In non-secure application such as simulations in academic environment, and so on, the
user is not concerned whether or not the bit-generation method can be determined from the
PRBG output. On the other hand, the PRBGs used for encryption and secure transmission
or storage of data must be provably secure. In particular, the bits in the generated sequence
need to exhibit the unpredictability of a fair coin toss in order to be cryptographically secure.
Pseudorandom bit sequences are generated using a deterministic algorithm, yet their outputs
needs to appear as though they were truly random.

The desired properties of a pseudorandom bit generator are:

• The process for generating pseudorandom bits needs to be fast.
• The generated bit sequence should have proportional amounts of 1’s and 0’s.
• The sequence of 1’s and 0’s should not follow a pattern. In short, the likeliness of

both should be no better than flipping a fair coin.
• The generated bit sequence should pass the suite of various randomness tests.

Various forms of encryption require pseudorandom bit sequences. A simple example is
the use of stream ciphers in many cable television broadcasts today. The signal sent from
the cable company to the user’s cable box is encrypted and decrypted using a stream
of pseudorandom bits. The bit by bit encryption/decryption is accomplished by adding
(Exclusive-Or) a pseudorandom bit sequence to the data (this if often called a one-time
pad). For example, suppose our message is M = 1100110. In order to encrypt it, we
add a string of random bits, B = 1011010 and Exclusive-Or (XOR) denoted as �. This
produces a ciphertext C. Mathematically, C = M � B = 1100110 � 1011010 = 0111100.
Decryption is carried out by adding B to the ciphertext. Hence, the decrypted message,
M = C � B = 0111100 � 1011010 = 1100110.

The next chapter discusses the theory behind the original Blum-Blum-Shub pseudorandom
bit generator (BBS) as well as the number theory behind the idea in order to aid the reader
in understanding the algorithm. We also discuss the associated cryptosystem based on both
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versions of BBS. In Chapter 3, we go over our methodology for modifying the original BBS
and generating pseudorandom bit sequences from both generators, which will be tested
using a suite of tests by the National Institute of Standards and Technology [6]. This chapter
explains what each test does and how to read the results. We will also lay the groundwork
on how we compare the results that we get from the tests and how we interpret the results.
Chapter 4 focuses on the results of the tests. Finally, Chapter 5 o�ers a conclusion along
with recommendations for future work.
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CHAPTER 2:
Blum-Blum-Shub

Chapter 2 explores the theory behind BBS and its associated cryptosystem. We also discuss
the proposed modification of BBS and address a new cryptosystem based on this modified
generator.

2.1 Blum-Blum-Shub Pseudorandom Bit Generator
Lenore Blum, Manuel Blum and Michael Shub proposed the Blum-Blum-Shub pseudo-
random number generator, and the original paper was published in 1986 [7]. In order
to generate pseudorandom bits, the BBS algorithm requires large prime numbers called
Blum-primes, which are prime numbers p such that p ⌘ 3 (mod 4) [8], [7].

Definition 1. The Blum-Blum-Shub pseudorandom bit generator (BBS) algorithm is as
follows [5]:

• Generate two large Blum-prime numbers, p and q such that gcd(p, q) = 1
• Let n = p · q
• Choose a random seed, x0 2 {1, 2, . . . , n � 1}
• Let xi ⌘ x2

i�1 (mod n) and zi = xi (mod 2) = Parity (xi)
• The output sequence is Z = (zi)i�1.

Example 1. The example below will demonstrate how these pseudorandom bit sequences
are generated via BBS:

• Let, p = 7 ⌘ 3 (mod 4) and let q = 19, which is 3 (mod 4). Then, n = p · q =
7 · 19 = 133

• Choose x0 (a random seed) = 100
• Then x1 = 1002 (mod 133) = 25
• x2 = 252 (mod 133) = 93
• x3 = 932 (mod 133) = 4
• x4 = 42 (mod 133) = 16
• x5 = 162 (mod 133) = 123, etc.
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• z1 = the parity of x1 = 1. Similarly, z2 = 1, z3 = 0, z4 = 0, z5 = 1, and so on.
• Hence, the pseudorandom bit sequence is 11001 . . .. The sequence obviously repeats

after as many as the modulus number of steps (sometimes, fewer).

2.2 BBS as a Cryptosystem
In a public key cryptosystem, we have two separate keys for encryption and decryption. One
key is called a public key, and the other is called a private key. Each individual will have
a unique public and private key. As the name suggests, the public key is either published
or distributed in clear. On the other hand, the private key is kept secret. For example, if
Bob wants to send a message to Alice, he encrypts his message using Alice’s public key
and then send the encrypted message to her. Only Alice, who possesses the corresponding
private key, can decrypt and read the original message. Public key cryptosystem relies on
these premises.

In this section, we demonstrate how BBS could be used as a secure public key cryptosystem.
Suppose that Alice and Bob want to communicate to each other. Assume Alice is the
recipient and Bob is the sender. Alice, the recipient, will generate two large Blum-primes
p and q such that the modulus n = p · q. Here, p and q are kept secret and n is public. The
security of the cryptosystem relies on the fact that anyone can encrypt using n as a modulus,
but the decryption is only possible if the prime factors p and q are known. In [9], Jeremy
Booher describes the methodology for finding the square roots that makes the decryption
possible.

The BBS cryptosystem works as follows:

1. Suppose Bob needs to encrypt the message M = m1,m2, . . . ,mk , k < n. The
encryption process is performed as follows:

• Choose a random seed, x0 2 {1, . . . , n � 1}.
• xi ⌘ x2

i�1 (mod n), 1  i  k + 1.
• zi = Parity (xi), 1  i  k.
• The pseudorandom bit sequence generated is Z = (z1, z2, z3, . . . , zk ).
• Compute the ciphertext C = M � Z = (c1, c2, c3, . . . , ck ), which is sent to Alice

along with the integer xk+1. Note that xk+1 = x2
k (mod n) is an integer, which

6



will allow Alice to decrypt.
2. Alice receives the ciphertext sent by Bob and decrypts it using the factors p and q to

find the square roots. Decryption is done as follows:
• Alice receives the ciphertext c1, c2, c3, . . . , ck , along with the extra information

xk+1. She takes xk+1 to calculate (see the next step) the pseudorandom bit
sequence Z0 = (zk, zk�1, . . . , z2, z1).

• The residue xk modulo n is calculated using the Chinese Remainder Theorem:

xk ⌘ x
p+1

4
k+1 (mod p)

xk ⌘ x
q+1

4
k+1 (mod q)

• The parity of the xk modulo n is the last bit zk of the pseudorandom sequence
used to encrypt the original message.

• The remaining bits of the pseudorandom sequence is calculated by repeat-
ing the process. At the end, the extracted bits in pseudorandom sequence
Z0 = (zk, zk�1, . . . , z2, z1) are reversed such that the original pseudorandom bit
sequence, Z = (z1, z2, z3, . . . , zk ) is recovered.

• The original message is found by computing M = C � Z .

Below is an example of a message being sent using the BBS cryptosystem.

Example 2. Alice picks two Blum-primes p = 7 and q = 19 such that the modulus
n = 7 · 19 = 133. She keeps p and q private and sends n = 133 to Bob. The encryption is
done as follows:

• Assume that the plaintext message is M = 1010.
• Bob chooses a random seed, x0 = 100 such that 1 < x0 < N .
• x1 = x2

0 (mod N ) = 1002 (mod 133) = 25.
• x2 = x2

1 (mod N ) = 252 (mod 133) = 93.
• x3 = x2

2 (mod N ) = 932 (mod 133) = 4.
• x4 = x2

3 (mod N ) = 42 (mod 133) = 16.
• x5 = x2

4 (mod N ) = 162 (mod 133) = 123.
• Bob will compute the parity bits such that z1 = Parity (x1) = 1. Similarly, z2 = 1,

z3 = 0 and z4 = 0. Hence, the pseudorandom bit sequence is Z = 1100.

7



• The ciphertext is then C = M � Z = 1010 � 1100 = 0110.
• The message sent to Alice is ciphertext C along with x5 appended at the end of the

message. For the purpose of this example, the ciphertext sent is 0110(123). (Note:
x5 = 123 is used as the decimal representation instead of its binary representation).

Once Alice receives the message, the decryption is done as follows:

• Alice uses the Chinese Remainder Theorem to solve for x4,

x4 ⌘ 123
7+1

4 (mod 7)

x4 ⌘ 123
19+1

4 (mod 19),

and she finds the value x4 = 16.
• The last bit of the pseudorandom sequence is z4 = Parit y (x4) = Parit y (16) = 0.
• Alice will repeat the process until all 4 bits of pseudorandom sequence used for

encryption has been recovered.
• Z0 = (z4, z3, z2, z1) = 0011 (we removed commas, for convenience). Hence, Z = 1100

is obtained by reversing (mirror image) the bits of Z0.
• The decrypted message then equals M = 0110 � 1100 = 1010.

2.3 Elementary Number Theory
The security of BBS is based on the di�culty of solving the quadratic residuosity problem.
As long as appropriate primes are selected and at most loglogN bits are output Junod and
Ding have shown that the generator will remain secure. [5], [10]. We have thus far discussed
how the algorithm generates the bit sequence of desired length, but must now also discuss
some number theory in order to understand the security aspects of the generator. Note that
the logarithm base in this paper is 2.

Definition 2 ( [5]). Let n 2 N and Z⇤n be the set of positive integers modulo n. Then a 2 Z⇤n
is called a quadratic residue modulo n if there exists b 2 Z⇤n such that:

a ⌘ b2 (mod n).

The set of quadratic residues modulo n is denoted by QRn. Furthermore, the set of quadratic
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non-residues is defined as
QN Rn := Z⇤n \QRn.

Definition 3 ( [5]). Let p be an odd prime and Z⇤p denote the set of positive integers modulo p.
For a 2 Z⇤p, the Legendre symbol

⇣
a
p

⌘
is defined as:

 
a
p

!
=

8>>>><>>>>:

0 if p \ a
1 if a 2 QRp

�1 if a < QRp.

Theorem 1. Let p be an odd prime, and let a 2 Z⇤p, Then

 
a
p

!
⌘ a

p�1
2 (mod p).

Proof. We now follow closely Junod’s proof of Theorem 1 from [5]. Let a 2 QRp, and
a ⌘ b2 (mod p) for some a 2 Z⇤p. Using Fermat’s Little Theorem,

a
p�1

2 ⌘ (b2)
p�1

2 ⌘ 1 (mod p).

Now, assume a < QN Rp. Let g be a generator of Z⇤p. Then a ⌘ gt (mod p), where t is
odd. Otherwise, a ⌘ gt ⌘ g2s = (gs)2. Hence, for t = 2s + 1,

a
p�1

2 ⌘ (gt )
p�1

2 ⌘ (g2s+1)
p�1

2 ⌘ (g2s)
p�1

2 · g
p�1

2 ⌘ g
p�1

2 .

Here, (g
p�1

2 )
2
= 1. Thus, g

p�1
2 = 1 or �1. Since, g is a generator of Z⇤p, the order of g is

p � 1, and g
p�1

2 = �1. ⇤

Theorem 1 is very helpful as it lets us determine whether an element is a quadratic residue
of the finite field. It is also known that if p is an odd prime, where p 2 Z⇤p, then the number
of quadratic residue equals to the number of quadratic non residues [5].

Theorem 2. Let p be an odd prime and a, b 2 Z. Then
 

a
p

!
·
 

b
p

!
=

 
ab
p

!
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Proof. We again use [5]. By Theorem 1,
 

a
p

!
·
 

b
p

!
= a

p�1
2 · b

p�1
2 = (a · b)

p�1
2 (mod p) =

 
ab
p

!
.

⇤

Next, we discuss the Jacobi symbol, which is analogous to the Legendre symbol for com-
posite moduli. This concept is particularly important when dealing with BBS because
the modulus n is not just a prime number but rather a composite number, a product of
Blum-primes.

Definition 4 ( [5]). Given an odd integer n with a prime factorization, such that n =
Y

i

pei
i

and a 2 Z⇤p, the Jacobi Symbol
⇣

a
n

⌘
is defined as

✓a
n

◆
:=

Y

i

 
a
pi

!ei
.

Certainly (see [5], for example), if n = p · q, where p, q are distinct primes, then exactly
half of the elements have the Jacobi symbol +1 and other half have the Jacobi symbol of
�1. These sets are denoted as Z⇤n(+1) and Z⇤n(�1), respectively.

Theorem 3. Let n be an odd integer, and let a, b 2 Z. Then
 

ab
n

!
=

✓a
n

◆
·
 

b
n

!
.

Proof. The proof is well known and given in most elementary number theory books. Since
we mostly used [5] we provide his approach. Using Definition 4, we get

 
ab
n

!
=

Y

i

 
ab
pi

!ei
.

Using Theorem 2, we get

Y

i

 
ab
pi

!ei
=

Y

i

 
a
pi

!ei
·
Y

i

 
b
pi

!ei
=

✓a
n

◆
·
 

b
n

!
.
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⇤

As discussed earlier, the decryption in the BBS cryptosystem is possible only if one knows
p and q, which is the factorization of n. It is known that a nonzero quadratic residue in a
finite field, Zp, where p is prime, has exactly two square roots [5].

Since BBS uses composite moduli, we will look at the square roots of quadratic residue
in a general multiplicative group. For a composite moduli n, where n is an integer, Junod
showed that if a 2 QRn, then a will have exactly 2k distinct square roots, where k is the
number of distinct prime factors of n [5]. Note that for BBS, where n = p · q, we get 4
distinct square roots.

During the decryption process of the BBS cryptosystem, we used the Chinese Remainder
Theorem to find the correct square root of the residue. In his paper, Junod proves that for a
composite moduli, where n = p1, p2,...., pk , where pi are distinct prime, any element a 2 Z⇤n
is a quadratic residue modulo n if and only if a is the quadratic residue of Z⇤pi for each prime
pi corresponding to the moduli [5]. This is important because in the BBS cryptosystem, n
is known. Thus, even if an adversary knows the modulus n and the last residue xn+1, taking
the square root will not help in the calculation of xn. Hence, during the decryption process,
the Chinese Remainder Theorem is used to calculate the unique residue.

To further clarify the uniqueness of the quadratic residues and the use of Blum-primes, we
look at following results [5].

Theorem 4. If p is an odd prime number, then -1 2 QN Rp if and only if p is a Blum-prime.

Proof. We cite Junod’s paper again [5].
Using Theorem 1, we get:  

a
p

!
⌘ (�1)

p�1
2 (mod p).

Since p is an odd prime, p ⌘ 1 (mod 4) or p ⌘ 3 (mod 4). Furthermore, p�1
2 is odd if and

only if p ⌘ 3 (mod 4) [5]. ⇤

Theorem 4 answers the question why BBS uses Blum-primes as opposed to just any other
primes. Since, �1 < QRn, the BBS algorithm will not yield the residue modulo n to be
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�1 during any iteration. This is important because if �1 belonged to the quadratic residue
modulo n, then each bit after this iteration would yield 1’s, resulting in a non-random
sequence.

In the original BBS, where the modulus, n = p · q, where p and q are Blum-primes, out of
the four possible square roots for each element in the quadratic residue, exactly one is in the
quadratic residue itself. Junod’s paper includes the detailed proof [5].

Next, we propose a modification to the original BBS and discuss the cryptosystem based
on this modification.

2.4 Our Modification of BBS
Our goal for this paper is to modify the BBS algorithm with the hope of getting better
random sequences when tested against the NIST standards. The pseudorandom binary
sequence that we get from the modified BBS is therefore compared to the original BBS for
the randomness using the suite of tests from NIST.

Modification: We will randomly generate a new large Blum-prime r , and use the modulus

n = p · q · r .

We discuss the details on the modification and testing in the next chapter. We begin by
discussing the cryptosystem based on the modification.

2.4.1 Modified BBS Cryptosystem: All Blum-Primes
The modified BBS cryptosystem is defined in the same way as the original one. The only
di�erence during the encryption process is that the modulus n, is the product of three
Blum-primes. Now, Alice will still keep p, q, r as a private key and send the modulus n to
Bob. Bob will use the modulus n in the exact same way as he did before in the original
BBS cryptosystem to send the message to Alice.

There is only one added step on Alice’s end for decryption. Once Alice receives the
ciphertext, say C = (c1, c2, c3, . . . , ck, xk+1), the decryption is done again using the Chinese
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Remainder Theorem but now for the three prime number p, q, and r . Here,

xk = x
p+1

4
k+1 (mod p)

xk = x
q+1

4
k+1 (mod q)

xk = x
r+1

4
k+1 (mod r).

2.5 Modified BBS: Using 2 Blum-Primes and 1 Non Blum-
Prime

In this section, we discuss expanding our choices for the primes beyond only Blum-primes.
To do so, we choose two large Blum-primes that are congruent to 3 modulo 4, and 1
large prime that is congruent to 1 modulo 4. If Bob sends Alice the encrypted message
C = (c1, c2, c3, . . . , ck, xk+1), then Alice should still be able to decrypt the message using
the private key p, q, r and the number xk+1. Below, we demonstrate that the decryption
process still works:

• If p ⌘ 1 (mod 4) and q, r ⌘ 3 (mod 4), then pq ⌘ 3 (mod 4).
• For the Blum-prime r ⌘ 3 (mod 4),

x2
k = x

r�1
2 +1

k+1 (mod r)

= xk+1 (mod r).
(2.1)

• For pq, we need to show that

x2
k = x

pq�1
2 +1

k+1 (mod pq)

= x
pq�1

2
k+1 · xk+1 (mod pq)

= xk+1 (mod pq),

(2.2)

which will follow from

x
pq�1

2
k+1 (mod pq) ⌘ 1 (mod pq).
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To argue that, observe that

pq � 1
2
=

(p � 1) · (q � 1)
2

+
(p � 1)

2
+

(q � 1)
2

=
�(pq)

2
+

(p � 1)
2

+
(q � 1)

2
.

(2.3)

Now,

x
pq�1

2
k+1 (mod pq) = x

�(pq)
2 +

(p�1)
2 +

(q�1)
2

k+1 (mod pq)

= x
�(pq)

2
k+1 · x

(p�1)
2

k+1 · x
(q�1)

2
k+1 (mod pq)

⌘ 1 (mod pq).

(2.4)

Now, the Chinese Remainder Theorem can be used to recover the bits used for the
encryption and subsequently, decrypt the message.

In the next chapter, we will discuss the methodology and the details on how the data is
collected.
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CHAPTER 3:
Methodology

In Chapter 2, we discussed BBS, the number theory behind the generator, the modification
to BBS, as well as the cryptosystems based on both versions. In this chapter, we explain our
research methodology, including the code used to generate the pseudorandom sequences,
the modification of BBS, the sample gathering, the tests for randomness, and the comparison
of our results with previously known ones.

3.1 Codes and Testing
In order to generate the desired bit sequence, we utilized a Python program. A complete
copy of the code used in our research can be found in the Appendix.

3.1.1 Description of Python code:
The Python code used in our research is divided into three files:

1. The Blum-prime generator (PrimeGen.py) generates a big random prime of desired
size when the function is called. The generator program outputs a Blum-prime.
Appendix A.2 lists a complete copy of the code.

2. The Rantest.py program contains a suite of NIST randomness tests. The program
consists of 14 di�erent types of statistical tests. Appendix A.3 lists the complete copy
of the code.

3. The MainBBS.py program is the working interface that employs the BBS method to
generate the desired length of pseudorandom sequences. It does so by first calling the
functions from PrimeGen.py to obtain the big Blum-primes needed to generate the
sequence and subsequently tests the sequence by calling the Randtest.py program.
Appendix A.1 lists the complete copy of the code.

The test results were compiled in an Excel file. Next, we talk about our method to generate
the bit-strings for both the original and the modified BBS, respectively.
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3.1.2 Generating BBS Bit-Strings
Our code generates two large Blum-primes p and q of 256 bits size and we take the modulus
to be

n = p · q.

The program generates a big Blum-prime of size 300 bits, which is used as a seed. The
larger size was purposely chosen to guarantee that the seed is coprime to the modulus. For
our tests, we generate sequences of size roughly one million bits. The bit sequences are then
subjected to a suite of NIST tests. The data is collected for each type of tests and sorted into
two categories. The first category shows the number of strings that failed a particular test,
and the second category shows the number of strings that failed one or more tests. These
two processes are done for both the original and the modified version of BBS.

3.1.3 Generating Modified BBS Bit-Strings
In the original BBS, n = p · q, where p and q are randomly generated large Blum-primes.
For the modified version, we will introduce a third, call it r , randomly generated large
Blum-prime of size 256 bits, and we use the following modulus for our BBS modification

n = p · q · r .

The bits are generated in the similar way as in the original BBS. The only di�erence is the
modulus n. In the original BBS, n = p · q and in modified BBS, n = p · q · r . The obtained
(presumably) pseudorandom bit sequence is run through the NIST tests and the results are
recorded to compare the two versions of BBS.

3.1.4 Getting Test Samples
As explained in Chapter 2, BBS generates the sequence by taking the parity bit in each
step, which generates a cryptographically secure pseudorandom bit sequence. Umesh V.
Vazirani and Vijay V. Vazirani [11] proved that it is possible to take up to k bits, where

k  log log N,
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where N denotes the size of the modulus, and the sequence remains cryptographically
secure. In this paper, we not only want to test the e�ects of introducing a third large Blum-
prime but also want to see the results from the randomness tests when more than one parity
bit is taken in each steps of the algorithm. Some research has been done on the security
of BBS when taking the last 2 bits in each iteration, but little has been investigated on the
e�ects when more than the parity bit is taken in each interval [11]. In order to obtain enough
data to make proper comparisons, we have taken seven di�erent types of samples, where
the length of bit-sequences is roughly around one million bits. The first seven samples takes
the last 1, 3, 4, 5, 10, 50, and 100 bits respectively to generate the bit-sequences of length
roughly one million bits. The last sample uses all of the bits from each iteration to generate
the bit-sequence of length of roughly one million bits.

In this paper, the modulus is of di�erent size for the original and the modified BBS. The
original BBS has modulus of size N = 2512 (two large Blum-primes of size 256 bits each
so that n = p · q) and the modified version has a modulus of size N = 2768 (three large
Blum-primes of size 256 bits each so that n = p · q · r).

3.1.5 Analyzing the Test Results
Our motivation for this research is to analyze the security, randomness and time requirement
of the modified BBS when compared to the original BBS. We have broken this part of our
research into the following categories:

1. Test type: Here, we have a total of 14 di�erent tests for randomness. First, we look
at the performance of sequences against each test and see if the sequences performed
better or worse in one of the tests. This will give us a broader view on the performance
of both versions. It will help analyze the impact of modifications based on the type
of a particular test.

2. Overall performance: Next, we look at the number of sequences that passed all the
tests. This will show the performance of each sequence that is being tested. We
will also look at the sequences that failed one or more tests. This will be further
subdivided based on the number of failed tests.

3. Time requirement: For this comparison, we run both versions of BBS on an Apple
Macbook Air with the following specifications:
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• Operating System: OS X El Capitan
• Version: 10.11.4
• Type: Macbook Air (13 inch, Early 2015)
• Processor: 1.6 GHz Intel Core i5
• Memory: 4 GB 1600 MHz DDR3
• Graphics: Intel HD Graphics 6000 1536 MB

We record the time taken to generate 200 sequences for the last 1, 3, 4, 5, 10, 50, and
100 bits, respectively.

3.2 Tests for Randomness
As discussed earlier, the generated bit strings from the pseudorandom bit generators are
tested to see if they adhere to the desired randomness properties using the suite of tests from
NIST [6]. For our research we use the following tests to evaluate the randomness properties
of both versions of BBS:

1. The Frequency (Monobit) Test
2. Frequency Test within a Block
3. The Runs Test
4. Tests for the Longest-Run-of-Ones in a Block
5. The Binary Matrix Rank Test
6. The Discrete Fourier Transform (Spectral) Test
7. The Non-overlapping Template Matching Test
8. The Overlapping Template Matching Test
9. Maurer’s "Universal Statistical" Test

10. The Linear Complexity Test
11. The Approximate Entropy Test
12. The Cumulative Sums (Cusums) Test
13. The Random Excursions Test
14. The Random Excursions Variant Test

As discussed in Chapter 2, the NIST tests are performed in Python. We use the code as-is
and without making any changes, since the tests are universally accepted standards. This
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includes the block size and number of blocks, which we will discuss later in the chapter.
The statistical tests performed determine the (confidence in the) randomness of a sequence.
Since, randomness is a probabilistic feature, it can be interpreted in terms of probability.
Here, the tests are designed to test a null hypothesis H0, which is the hypothesis that the
sequences are random. Along with the null hypothesis, the alternative hypothesis Ha is
that the sequences are not random. For each individual test performed we either accept
the null hypothesis or reject it. This is done based upon comparing the p-value generated
during each test with a predetermined standard. As defined by NIST, the p-values represent
the probability that a perfect pseudorandom bit generator would generate a less random
sequence compared to the sequence that is tested [6]. According to NIST documentation, a
significance (benchmark) value of 0.01 is chosen. Here, a significance value of 0.01 means
that if 100 non-random sequences are tested, then 1 out of 100 is expected to be rejected. If
the p-value � 0.01, then the sequence is considered random with a confidence of 99% [6].

Below, we discuss the key ideas for the mentioned 14 di�erent NIST tests. For detail
explanations, please refer to [6]. The explanations below are taken from the source to
highlight the key ideas.

3.2.1 The Frequency (Monobit) Test
This test checks if there are an even number of ones and zeros in the binary string. A
sequence is considered random/balanced, if it contains an even number of ones and zeros.
In order to test whether or not the sequences are balanced, we perform statistical hypothesis
testing. The test outputs a p-value, which determines the randomness of the given sequence.

• If the p-value is < 0.01, then the sequence is considered non-random.
• If the p-value is � 0.01, then it is deemed random.

The test has a recommended input size of at least 100 bits for a successful result [6]. For
our tests, the input size of the binary sequence is roughly one million bits in length.

3.2.2 Frequency Test within a Block
According to [6], this test examines the frequency of ones and zeros within blocks of size
M . In order to do so, the block size must be a divisor of the sequence length. If this is not
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the case, the number of blocks of size M is taken to be N =
h

n
M

i
and the bits following

the last block are discarded. As before, the number of ones and zeros in each block should
agree in order for the sequence to appear random. The NIST recommended standards for
this test are:

• The input size, n � 2100 � 1 (more than 100 bits)
• The block size, M � 20
• The block size, M � (0.01)n
• The number of blocks, N  100

The test outputs a p-value, which determines the randomness of the given sequence. If the
p-value of the test is � 0.01 then the sequence is considered random [6].

3.2.3 The Runs Test
According to [6], given a sequence, a run is defined as an uninterrupted maximal subse-
quence of identical bits. A run of length k, therefore has k identical bit with bits of opposite
value at either ends. For example, a run of ones is preceded and followed by zeros. The
likelihood of having a one in a truly random sequence is 1

2 . Therefore, the likelihood of
having a run of length k is 1

2k . In order to ensure that the sequence appears random, there
should be no discernible pattern of runs of particular lengths. The NIST test examine the
sequence to ensure that this is in fact the case. The test outputs a p-value that determines
the randomness of the given sequence. A sequence with the p-value of � 0.01 is considered
random. The recommended size for the test input is n � 100 bits [6]. For our test, we use
an input size of approximately one million bits.

3.2.4 Tests for the Longest-Run-of-Ones in a Block
This test is similar to the Runs test. Reference [6] explains that this test checks for the
longest run of ones in an M-bit block. As before, we alter the length of the sequence n to
ensure it is a multiple of the block size. This test is used to determine whether the longest
run of ones is similar to what we could expect in a random sequence. NIST guidelines on
the length of string n and length of the block sizes and p-value are as follows:

• Minimum length n = 128 bits then M = 8 bits
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• Minimum length n = 6272 bits then M = 128 bits
• Minimum length n = 750, 000 bits then M = 104 bits
• If the p-value of � 0.01, the sequence is considered random [6].

3.2.5 The Binary Matrix Rank Test
This test searches for any linear dependence among fixed-length substrings of the original
sequence of length n. It is done by creating matrices from those sub-strings and statistically
analyzing them for any kind of linear dependence. The matrices created are of size M ⇥Q,
where the number of blocks N =

h
n

M ·Q
i

[6]. The test outputs a p-value, which determines
the randomness of the given sequence. The NIST standard for this test is:

• If the p-value is < 0.01, then the sequence is considered non-random.
• If the p-value is � 0.01, then the sequence is deemed random.

For the input size of our sequences, M = Q = 32 is recommended [6].

3.2.6 The Discrete Fourier Transform (Spectral) Test
According to [6], the purpose of this test is to detect the presence of repetitive patterns in
the given binary sequence. For the test, the 0’s and 1’s of the given binary bit sequence
Sn = ✏1, ✏2, . . . , ✏n, where ✏ i = 1 or 0, 8i = 1, 2, . . . , n is converted into a new sequence
X = x1, x2, . . . , xn, where xi = 2✏ i � 1. Next, the Discrete Fourier transform (DFT) is
applied on X producing complex variables representing the periodic components of the
sequence of the bits at various frequencies. The test compares whether the peaks that
exceeds 95% threshold are significantly di�erent than that of 5%. The test outputs a p-value
that determines the randomness of the given sequence. As before, if the p-value is � 0.01,
then this NIST tests considers the sequence pseudorandom. The input recommendation is
a minimum of 1000 bits [6]. For our research, we use an input size of approximately one
million bits for this test.

3.2.7 The Non-overlapping Template Matching Test
Reference [6] explains that the non-overlapping template matching test determines if any
correlation between the given bit string and any non-periodic pattern exists. A pseudoran-
dom bit generator could output blocks of bits that each pass the randomness test, but fails
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to appear random because a repeated block template appears in the sequence in its entirety.
The test searches for an m-bit pattern throughout the entire sequence using an m-bit sliding
window. The test outputs a p-value that determines the randomness of the sequence. The
p-value of � 0.01 is considered random. Any result yielding a p-value less than 0.01 means
that the sequence is non-random. For the size of the sliding window, the code is setup for
m = 1, 2, 3, . . . , 10 with the recommendation of m = 9 or 10 to achieve any meaningful
results [6].

3.2.8 The Overlapping Template Matching Test
This test is very similar to the non-overlapping template matching test. However, the test
looks for any irregular occurrence of a pre-specified template pattern of size m-bits in an
m-bit sliding window. If the test yields a p-value less than 0.01, the sequence is considered
random. The test recommends using a bit string of size n � 106 bits [6], which we do.

3.2.9 Maurer’s “Universal Statistical” Test
This test looks for the matching patterns within the sequence and the number of bits between
the patterns found. This correlates with the compression of the sequence without loss of
information. The more compressible the sequence is, the less random it is. The test outputs
a p-value, which determines the randomness of the sequence. If the p-value is � 0.01, then
the test outputs the sequence as random [6].

3.2.10 The Linear Complexity Test
According to [6], this test focuses on the length of a LFSR needed to determine the
complexity of a given sequence. The linear complexity test determines the complexity of
the sequence. The NIST input recommendations for this test are:

• The test requires sequences of n � 106 bits.
• 500  M  5000, where M is the size of the block.
• The number of blocks, N � 200, where n = M · N .

The test outputs a p-value that determines the randomness of the sequence. The p-value of
� 0.01 regards the sequence as random [6].
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3.2.11 The Approximate Entropy Test
According to [6], this test focuses on the frequency of all possible m-bit patterns in the given
bit sequence. The test compares two consecutive blocks of length m and m + 1 and checks
for the frequency of overlapping blocks against the result of a random sequence. The same
source further recommends that one choose the block size M such that M  blog nc �2. As
with many of the other tests, this test outputs a p-value, which determines whether or not
the sequence is considered to be random. For this test, if the p-value � 0.01, the sequence
is considered random [6].

3.2.12 The Cumulative Sums (Cusums) Test
This test looks at a portion of a sequence and determines if the cumulative sum of that
sequence is relatively larger or smaller to that of a random sequence. The input is changed
by converting 0’s into �1’s. In this context, random walk means that the test is looking at
the partial sum up of the sequence and excursion means the largest deviation of the partial
sums from zero. For a random sequence, the excursion of the random walk is close to zero,
meaning that there are not a lot of repetitions of the same bits one after the other. The
recommended input size for this test is n � 100 bits. The p-value of � 0.01 as an output
indicates that the binary input is random [6].

3.2.13 The Random Excursions Test
This test is similar to the cumulative-sums test. Here, the test focuses on the number of
cycles in the cumulative sun random walk. According to [6], this test determines if the
number of visits to a particular state within a cycle is consistent with that of a random
sequence. The test consists of eight tests, each with its own p-value. Similar to previous
tests, a p-value of � 0.01 means that the sequence is random. The recommended input size
for this test is � 106 bits [6].

3.2.14 The Random Excursions Variant Test
According to [6], the test checks for the cumulative-sum random walk and compares the
number of times a particular state occurs. It detects the number of times a deviation occurs
when compared to a random sequence. This test is comprised of a series of 18 tests each
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with an associated p-value. Similar to other tests, a p-value of � 0.01 means that the
sequence is random. The recommended input size for the test is � 106 bits [6].
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CHAPTER 4:
Test Results

This chapter focuses on the comparison between the original and the modified BBS. We
have eight di�erent types of samples, of which each di�er in the number of bits which is
used. The samples are divided into sequences that extract the last bit, last 3 bits, last 4
bits, last 5 bits, last 10 bits, last 50 bits, last 100 bits, and all bits, respectively. For each
sample type, we generate 200 sequences for both versions of BBS. We want to see how the
generated sequences perform against the NIST tests. We do so using three comparisons:

1. In the first comparison, we compare the pass rates for both the modified and the
original version of BBS based on specific NIST tests.

2. The second comparison examines performance based on overall pass rate.
3. The third comparison examines the modified and the original version of BBS with

respect to the time it takes to generate the sequence.

As discussed in Chapter 3, Vazirani and Vazirani proved that we can extract up to log log N
bits in each iteration of BBS, where N is the size of the modulus, and still maintain
security [11]. The authors also proved that extracting 2 bits per iteration of BBS, generates a
sequence that is secure [11]. The size of the modulus N for the original and the modified BBS
we use are 2512 and 2768, respectively. For the original BBS, this gives us log log N = log log
2512 = 9 bits. Similarly, for the modified BBS, this gives us log log N = log log 2768 = 9.58
bits, and we use the floor function upper bound of 9 bits.

4.1 The Last Bit
As one might expect, the last bit sequences only use the last bit. Each sequence for this test
is of size one million bits. For both versions of BBS, the size of the Blum-primes that we
generate are 256 bits long.

4.1.1 Performance Based on Type of Test
To display our results, we plot the data as a bar graph. Figure 4.1 shows the percentage
of sequences which pass each test for both versions of BBS. The data collected shows that
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Figure 4.1: The Last Bit: Side-by-Side Comparison by Tests

there is little variation in the percentage of sequences that passed each test. For all 14 tests,
we see that both version of BBS have a pass rate of more than 97 percent. According to
the data, it is di�cult to distinguish any performance di�erence between the two versions
of BBS.

4.1.2 Overall Performance
For this comparison, we focus on how the individual sequences performed against all of
the NIST tests. We want to see what percentage of the generated pseudo-random sequence
passed all of the tests. Among the failed tests, we also want to examine how many sequences
failed one, two, or more than two tests. The results are shown in Figure 4.2.

(a) Original BBS (b) Modified BBS

Figure 4.2: The Last Bit: Overall Performance by Sequences
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The data for the original BBS shows that 74 percent of generated sequences passed all 14
tests. Among the failed sequences, 17 percent failed one test, 5 percent failed 2 tests, and
4 percent failed more than 2 tests. The data for the modified BBS indicates 76 percent of
generated sequences passed all 14 tests. Among the failed sequences, 16 percent failed one
test, 3 percent failed 2 tests, and 5 percent failed more than 2 tests. This indicates that the
performances of both the original and the modified BBS are similar. We could not make a
clear distinction on the superiority of one sequence type over the other.

4.2 Last 3 Bits
We generated the sequences for this sample type by taking the last 3 bits in each iteration.
Here, the length of the sequence needs to be such that dividing by the number of bits we
wish to take produces an integer. We chose the length to be 1,000,002 so 1,000,002 / 3 =
333,334 iterations, where the last 3 bits are extracted during each iteration of the program.

4.2.1 Performance Based on Type of Test
In this side by side comparison, the data collected for the original BBS suggests that the
pass rate is more than 96 percent or higher. Similarly, the modified version has a pass rate
of 95 percent or higher. Figure 4.3 shows the side by side comparison of this sample type
for each of the NIST tests.

Figure 4.3: Last 3 Bits: Side-by-Side Comparison by Tests
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4.2.2 Overall Performance

In this comparison, the data suggests that the modified BBS performed slightly better than
the original version. Looking at the data, we see that the pass rate for the modified version
is at 79 percent as opposed to the 72 percent for the original version. When considering
the failure rate for the original BBS, we see that 19 percent of sequences failed one test, 4
percent failed two tests, and 5 percent failed more than 2 tests. For the modified version,
the failure rate was 15 percent, 2 percent and 4 percent, respectively.

(a) Original BBS (b) Modified BBS

Figure 4.4: Last 3 Bits: Overall Performance by Sequences

4.3 Last 4 Bits

4.3.1 Performance Based on Type of Test

The data for the original BBS suggests that the pass rate is 97.5 percent or higher for all
NIST tests. Similarly, the modified version has the pass rate of 96 percent or higher for all
NIST tests, indicating a similar performance to that of the original BBS. The results are
shown in Figure 4.5.
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Figure 4.5: Last 4 Bits: Side-by-Side Comparison by Tests

4.3.2 Overall Performance
The data shows that there is not much variation on the overall performance against the NIST
standard by both version of BBS. The original version has an overall pass rate of 78 percent
compared to 79 percent pass rate for the modified version. Among the failure rates, both
versions have similar results. The results for both versions of BBS are shown in Figure 4.6..

(a) Original BBS (b) Modified BBS

Figure 4.6: Last 4 Bits: Overall Performance by Sequences
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4.4 Last 5 Bits

4.4.1 Performance Based on Type of Test
The data for the original BBS shows that the pass rate for sequences is 97.5 percent or
higher for each NIST test. The modified BBS performed similar to the original with a pass
rate of 97 percent or higher for each NIST tests. Figure 4.7 shows the result for each tests.

Figure 4.7: Last 5 Bits: Side-by-Side Comparison by Tests

4.4.2 Overall Performance:
For this sample type, both the original and the modified BBS performed with equal pass
rates of 76 percent. Looking at the failure rate for the original BBS, we see that 12 percent
of sequences failed one test, 6 percent failed two tests, and 6 percent failed more than
two tests. Similarly, the failure rates of the modified BBS are 14 percent, 6 percent, and
4 percent, respectively. So far, both versions have performed in a similar manner in the
pseudo-randomness test. Figure 4.8 shows the result for both versions.
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(a) Original BBS (b) Modified BBS

Figure 4.8: Last 5 Bits: Overall Performance by Sequences

4.5 Last 10 Bits

4.5.1 Performance Based on Type of Test
The data collected shows that both the original and the modified versions of BBS have
similar performance. Both versions have pass rates of 97 percent or higher, and 96.5
percent or higher for all 14 NIST tests, respectively.

Figure 4.9: Last 10 Bits: Side-by-Side Comparison by Tests
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4.5.2 Overall Performance
Here, the data shows that the original BBS performed slightly better than the modified
version. The original BBS has a pass rate of 77 percent compared to 73 percent for the
modified version. Figure 4.10 shows the result.

(a) Original BBS (b) Modified BBS

Figure 4.10: Last 10 Bits: Overall Performance by Sequences

4.6 Last 50 Bits
In order to take the last 50 bits and generate a sequence of length greater than one million
bits, we had our program generate the sequences of length 2 million bits. We did this to
account for the cases where the quadratic residue modulo n was smaller than 50 bits in
size. As the program (mainbbs.py) pre-calculates the number of iteration based on the
the length of the sequence to be generated and the number of bits taken per iteration, this
approach ensures that the length of the output is greater than or equal to one million bits.

4.6.1 Performance Based on Type of Test:
Similar to other results, the data for this sample type do not show any noticeable variation.
Both the original and the modified BBS have pass rates of 97 percent or higher, and 97.5
percent or higher, respectively. Figure 4.11 shows the results.
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Figure 4.11: Last 50 Bits: Side-by-Side Comparison by Tests

4.6.2 Overall Performance
Here, the modified version performed slightly better than the original BBS. The modified
version performed with a 77 percent pass rate compared to a 72 percent pass rate for the
original version. The results are shown in Figure 4.12.

(a) Original BBS (b) Modified BBS

Figure 4.12: Last 50 Bits: Overall Performance by Sequences
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4.7 Last 100 Bits

4.7.1 Performance Based on Type of Test
The data shows that the original and the modified BBS each have pass rates of 97 or 97.5
percent or higher. This result is very similar to the previous sample types. Figure 4.13
shows the results.

Figure 4.13: Last 100 Bits: Side-by-Side Comparison by Tests

4.7.2 Overall Performance
Here, the original version performed with 79 percent pass rate compared to a 76 percent
pass rate of the modified version. Figure 4.14 shows the results.

(a) Original BBS (b) Modified BBS

Figure 4.14: Last 100 Bits: Overall Performance by Sequences
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4.8 All Bits
For this category, the algorithm generates sequences by extracting all of the bits in each
iteration. The generated sequences are roughly 1.1 million bits in length. The comparison
focuses on the e�ects on the pseudorandomness properties of sequences when tested against
the NIST tests.

4.8.1 Performance Based on Type of Test
The data suggests that both versions performed in a similarly. Here, the Monobit frequency
test and Cumulative sums test yield low pass rate between 90.5 and 92 percent for both
versions. All other tests have pass rate of 96.5 percent or higher for both versions. Figure
4.15 shows the results.

Figure 4.15: All Bits: Side-by-Side Comparison by Tests

4.8.2 Overall Performance
Here, the original BBS performed slightly better than the modified BBS. The original
version performed with a 69 percent pass rate compared to a 63 percent pass rate of the
modified version. Figure 4.16 shows the results.
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(a) Original BBS (b) Modified BBS

Figure 4.16: All Bits: Overall Performance by Sequences

4.9 Comparison Based on Time Required to Generate the
Sequences

The Blum-Blum-Shub pseudorandom bit generator is (probabilistically) provably secure
but slow compared to other PRBGs. For some low level application, it is certainly too slow,
however, it may be suitable for some applications requiring a higher degree of security [10].
In this section, we compute the time required to generate 200 sequences, each of length
approximately one million bits for the seven sample types discussed earlier. We then
examine the average time required to generate one sequence. Figure 4.17 shows the results.

Figure 4.17: Average Time to Generate a Million-Bit Sequence
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As previously mentioned, this test was performed using an Apple Macbook with the fol-
lowing specifications:

• Operating System: OS X El Capitan
• Version: 10.11.4
• Type: Macbook Air (13 inch, Early 2015)
• Processor: 1.6 GHz Intel Core i5
• Memory: 4 GB 1600 MHz DDR3
• Graphics: Intel HD Graphics 6000 1536 MB

When looking at the last bit, the data shows that the original BBS takes on average 7.46
seconds to generate a one million bit sequence. As expected, the time significantly decreases
as we take more bits per iteration. For the original BBS, taking the last 3 bits reduces the
time by approximately 60 percent. For the last 4, last 5, last 50 and last 100 bits, the time
drops by approximately 70, 76, 85, 93, and 94 percent respectively when compared to the
time required when only taking the last bit. Similarly, when only taking the last bit, the
modified version takes an average of 10.43 seconds to generate a million-bit sequence. The
time drops by approximately 65 percent when we take the last 3 bits per iteration. The time
required when taking the last 4, last 5, last 10, last 50 and last 100 bits are 73 percent, 77
percent, 87 percent, 94 percent, and 95 percent, respectively.

When looking at the result for both versions, we see that the time required to generate a
million bit sequence decreases significantly as the bits taken per iteration is increased. Also,
the data shows that the time required to generate a million-bit sequence is similar when the
bits taken per iteration is 10 or higher.
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CHAPTER 5:
Conclusion and Future Work

5.1 Conclusion

This thesis compared the original and the modified BBS. For this comparison, we gener-
ated sequences roughly one million bits in length and tested these sequences for pseudo-
randomness properties using a suite of tests from NIST. In order to compare the two versions,
we expanded the number of bits that could be extracted per iteration of the algorithm. As
discussed in Chapter 2, Vazirani and Vazirani showed that the number of least significant
bits that could be extracted per iteration is up to log log N [11]. During our research we
extracted far more bits than the log log N limit.

The test results that we analyzed were based on the NIST testing standards. Our comparisons
between both the original and modified versions of BBS was carried out using three metrics:
the type of test, the overall performance of each sequence when measured against the NIST
standards, and the time taken to generate the sequences in each category.

When we looked at the performance based on the type of test, the data suggests that both
versions of BBS performed in a similar manner. In each category, the passing rate we
observed was above 95 percent for both versions. Similarly, the data suggests that the
overall performance of the sequences in each category was similar as well. In few cases,
one version outperformed the other by a small margin. For the last 3 bits test, the modified
BBS performed slightly better with a pass rate of 79 percent compared to a pass rate of 72
percent for the original BBS. For the last 10 bits category, the overall performance of the
original BBS was better with a 77 percent pass rate as compared to a 73 percent pass rate
for the modified BBS. For the last 50 bit test, the modified BBS performed better with 77
percent overall pass rate compared to the 72 percent pass rate of the original BBS. For the
last 100 bits test category, the original BBS performed marginally better than the modified
version with a 79 percent versus 76 percent overall pass. It is worth noting that the overall
pass rate for both BBS versions stayed between 70 and 80 percent. The data obtained from
our research suggests that there was very little performance di�erence between the original
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and modified versions of BBS. The result of the statistical tests we performed also served
to validate the good pseudo-randomness properties of the original BBS.

5.2 Future Work
In Chapter 2, we briefly introduced cryptosystems based on the original BBS and the
modified BBS. It may be useful to further expand upon these ideas. In our research, we
compared the original and modified versions of BBS using statistical tests. The scope
and time allotted for our research unfortunately did not a�ord us an opportunity to pursue
number theoretic proofs for the security of the modified BBS. We therefore recommend that
future research on this topic include a formal proof for the security of the modified BBS.
We also think it would be valuable to explore research on the cryptosystem we proposed
when one of the three prime is not a Blum-prime. The data in Chapter 4 suggests that
the time required to generate a million bit long sequence dropped significantly when more
bits were extracted per iteration while the generated sequence still maintained its desirable
pseudo-randomness properties. For future work, we suggest using di�erent size Blum-
primes to narrow down the practical limit for bit extraction per iteration beyond log log N ,
when compared to the size of modulus.
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APPENDIX: BBS Test Programs Written in Python

A.1 The Main Interface: mainbbs.py
This is the working interface to generate, test and record the test results as an Excel file.
Devendra Manandhar, reporting analyst 3 at Providence Regional and Medical Center, WA
provided invaluable time and guidance to help us write the main interface [12]. The code
is as follows:

import csv

import random

import time

import numpy as np

randsequence = input("How many sequences?")

DesiredBits = input("How long do you want the bits sequence to be?")

divisor= input("How many of last n bits do you want to take

to make bit sequence?")

IterationsNeeded = DesiredBits/divisor #this gives you the desired

bits eg. if you want 1 million bits sequence,

and wanna take last 4 bits, algorithm

will divide the iterations into 250000

file1 = open( "Name of File for the result.csv", ’w’)

file1.write("Monobit,Blockfreq, Runstest, Spectraltest,

Nonoverlapping Template, Overlapping Template,

Cumulative Sums Test,Approximate Entropy, binarymatrixranktest,

Linear Complexity, Longest Run, Maurers Universal,

Random Excursion1,2,3,4,5,6,7,8,

Random Excursion Variant1,2,3,4,5,6,7,8,9,10,

11,12,13,14,15,16,17,18,p,p1,q,q1,r,r1,xi, \n")
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from PrimeGen import bigppr, pptest, algP

from randtest import monobitfrequencytest, blockfrequencytest, runstest,

spectraltest, nonoverlappingtemplatematchingtest,

overlappingtemplatematchingtest,cumultativesumstest,

aproximateentropytest, binarymatrixranktest,

linearcomplexitytest,longestrunones10000,

maurersuniversalstatistictest, randomexcursionstest,

randomexcursionsvarianttest

def rng():

global xi, yi

xi = (xi * xi) % n

bin (xi)

yi= bin(xi)[2:] #it eliminates the first two characters 0b...

zi = str (yi)

ai = str (zi[-divisor:])

return ai

for i in range(randsequence):

p = bigppr(256)

q = bigppr(256)

r = bigppr (256)

n = p*q*r

#n = p*q

xi = bigppr (300)

output = ’’
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result = ’’

for i in range(IterationsNeeded):

output += str(rng())

p1 = p%4 #Double check if Blum-prime

q1 = q%4 #Double check if Blum-prime

r1 = r%4 #Double check if Blum-prime

file1.write(str(monobitfrequencytest(output)) + ’,’ +

str(blockfrequencytest(output)) + ’,’ +

str(runstest(output)) + ’,’ + str(spectraltest(output))

+ ’,’ + str(nonoverlappingtemplatematchingtest(output))

+ ’,’ + str(overlappingtemplatematchingtest(output))

+ ’,’ + str(cumultativesumstest(output)) + ’,’ +

str(aproximateentropytest(output)) + ’,’ +

str(binarymatrixranktest(output)) + ’,’ +

str(linearcomplexitytest(output)) + ’,’ +

str(longestrunones10000(output)) + ’,’ +

str(maurersuniversalstatistictest(output)) + ’,’ +

str(randomexcursionstest(output)) + ’,’ +

str(randomexcursionsvarianttest(output))

+ ’,’ + str(p)+ ’,’+ str(p1)+ ’,’ + str(q) + ’,’+ str(q1)

+ ’,’ + str(r) + ’,’+ str(r1) + ’,’ + str(xi) + ’\n’)

file1.close()

#toc= time.clock()

#print (toc - tic)

print p

print q

print xi

#print output

#print toc
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import os

os.system(’say "Your test is done" ’)

A.2 Blum-Prime Generator: primes.py
The code below generates the Blum-prime and was downloaded for our use [13]. The code
is as follows:

import random

def bigppr(bits=256):

"""

Randomly generate a probable prime with a given

number of hex digits

"""

candidate = random.getrandbits(bits) | 1 # Ensure odd

prob = 0

while 1:

prob=pptest(candidate)

if prob>0:

return candidate

candidate += 2

def pptest(n):

"""

Simple implementation of Miller-Rabin test for

determining probable primehood.

"""

if n<=1:

return 0

# if any of the primes is a factor, we’re done
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bases = [random.randrange(2,50000) for x in xrange(90)]

for b in bases:

if n%b==0:

return 0

tests,s = 0L,0

m = n-1

# turning (n-1) into (2**s) * m

while not m&1: # while m is even

m >>= 1

s += 1

for b in bases:

tests += 1

isprob = algP(m,s,b,n)

if not isprob:

break

if isprob:

return (1-(1./(4**tests)))

return 0

def algP(m,s,b,n):

"""

based on Algorithm P in Donald Knuth’s ’Art of

Computer Programming’ v.2 pg. 395

"""

y = pow(b,m,n)

for j in xrange(s):
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if (y==1 and j==0) or (y==n-1):

return 1

y = pow(y,2,n)

return 0

A.3 NIST Tests: randtest.py
The code below is downloaded to test the generated sequences against the suite of NIST
tests [14]. The code is as follows:

#!/usr/bin/env python

import numpy as np

import scipy.special as spc

import scipy.fftpack as sff

import scipy.stats as sst

def sumi(x): return 2 * x - 1

def su(x, y): return x + y

def sus(x): return (x - 0.5) ** 2

def sq(x): return int(x) ** 2

def logo(x): return x * np.log(x)

def pr(u, x):

if u == 0:

out=1.0 * np.exp(-x)

else:

out=1.0 * x * np.exp(2*-x) * (2**-u) * spc.hyp1f1(u + 1, 2, x)

return out

def stringpart(binin, num):

blocks = [binin[xs * num:num + xs * num:] for xs in xrange(len(binin)

/ num)]

return blocks
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def randgen(num):

’’’Spits out a stream of random numbers like ’1001001’

with the length num’’’

rn = open(’/dev/urandom’, ’r’)

random_chars = rn.read(num / 2)

stream = ’’

for char in random_chars:

c = ord(char)

for i in range(0, 2):

stream += str(c >> i & 1)

return stream

def monobitfrequencytest(binin):

ss = [int(el) for el in binin]

sc = map(sumi, ss)

sn = reduce(su, sc)

sobs = np.abs(sn) / np.sqrt(len(binin))

pval = spc.erfc(sobs / np.sqrt(2))

return pval

def blockfrequencytest(binin, nu=128):

ss = [int(el) for el in binin]

tt = [1.0 * sum(ss[xs * nu:nu + xs * nu:]) / nu for xs in

xrange(len(ss) / nu)]

uu = map(sus, tt)

chisqr = 4 * nu * reduce(su, uu)

pval = spc.gammaincc(len(tt) / 2.0, chisqr / 2.0)

return pval

def runstest(binin):
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ss = [int(el) for el in binin]

n = len(binin)

pi = 1.0 * reduce(su, ss) / n

vobs = len(binin.replace(’0’, ’ ’).split()) +

len(binin.replace(’1’ , ’ ’).split())

pval = spc.erfc(abs(vobs-2*n*pi*(1-pi)) / (2 * pi * (1 - pi)

* np.sqrt(2*n)))

return pval

def longestrunones8(binin):

m = 8

k = 3

pik = [0.2148, 0.3672, 0.2305, 0.1875]

blocks = [binin[xs*m:m+xs*m:] for xs in xrange(len(binin) / m)]

n = len(blocks)

counts1 = [xs+’01’ for xs in blocks] # append the string 01 to

guarantee the length of 1

counts = [xs.replace(’0’,’ ’).split() for xs in counts1] # split into

all parts

counts2 = [map(len, xx) for xx in counts]

counts4 = [(4 if xx > 4 else xx) for xx in map(max,counts2)]

freqs = [counts4.count(spi) for spi in [1, 2, 3, 4]]

chisqr1 = [(freqs[xx]-n*pik[xx])**2/(n*pik[xx]) for xx in xrange(4)]

chisqr = reduce(su, chisqr1)

pval = spc.gammaincc(k / 2.0, chisqr / 2.0)

return pval

def longestrunones128(binin): # not well tested yet

if len(binin) > 128:

m = 128

k = 5

n = len(binin)

pik = [ 0.1174, 0.2430, 0.2493, 0.1752, 0.1027, 0.1124 ]

blocks = [binin[xs * m:m + xs * m:] for xs in
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xrange(len(binin) / m)]

n = len(blocks)

counts = [xs.replace(’0’, ’ ’).split() for xs in blocks]

counts2 = [map(len, xx) for xx in counts]

counts3 = [(1 if xx < 1 else xx) for xx in map(max, counts2)]

counts4 = [(4 if xx > 4 else xx) for xx in counts3]

chisqr1 = [(counts4[xx] - n * pik[xx]) ** 2 / (n * pik[xx])

for xx in xrange(len(counts4))]

chisqr = reduce(su, chisqr1)

pval = spc.gammaincc(k / 2.0, chisqr / 2.0)

else:

print ’longestrunones128 failed, too few bits:’, len(binin)

pval = 0

return pval

def longestrunones10000(binin): # not well tested yet

if len(binin) > 128:

m = 10000

k = 6

pik = [0.0882, 0.2092, 0.2483, 0.1933, 0.1208, 0.0675, 0.0727]

blocks = [binin[xs * m:m + xs * m:] for xs in xrange(len(binin)

/ m)]

n = len(blocks)

counts = [xs.replace(’0’, ’ ’).split() for xs in blocks]

counts2 = [map(len, xx) for xx in counts]

counts3 = [(10 if xx < 10 else xx) for xx in map(max, counts2)]

counts4 = [(16 if xx > 16 else xx) for xx in counts3]

freqs = [counts4.count(spi) for spi in [10,11,12,13,14,15,16]]

chisqr1 = [(freqs[xx] - n * pik[xx]) ** 2 / (n * pik[xx]) for xx in

xrange(len(freqs))]

chisqr = reduce(su, chisqr1)

pval = spc.gammaincc(k / 2.0, chisqr / 2.0)

else:

print ’longestrunones10000 failed, too few bits:’, len(binin)
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pval = 0

return pval

# test 2.06

def spectraltest(binin):

n = len(binin)

ss = [int(el) for el in binin]

sc = map(sumi, ss)

ft = sff.fft(sc)

af = abs(ft)[1:n/2+1:]

t = np.sqrt(np.log(1/0.05)*n)

n0 = 0.95*n/2

n1 = len(np.where(af<t)[0])

d = (n1 - n0)/np.sqrt(n*0.95*0.05/4)

pval = spc.erfc(abs(d)/np.sqrt(2))

return pval

def nonoverlappingtemplatematchingtest(binin, mat="000000001", num=8):

n = len(binin)

m = len(mat)

M = n/num

blocks = [binin[xs*M:M+xs*M:] for xs in xrange(n/M)]

counts = [xx.count(mat) for xx in blocks]

avg = 1.0 * (M-m+1)/2 ** m

var = M*(2**-m -(2*m-1)*2**(-2*m))

chisqr = reduce(su, [(xs - avg) ** 2 for xs in counts]) / var

pval = spc.gammaincc(1.0 * len(blocks) / 2, chisqr / 2)

return pval

def occurances(string, sub):

count=start=0

while True:

start=string.find(sub,start)+1
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if start>0:

count+=1

else:

return count

def overlappingtemplatematchingtest(binin,mat="111111111",num=1032,numi=5):

n = len(binin)

bign = int(n / num)

m = len(mat)

lamda = 1.0 * (num - m + 1) / 2 ** m

eta = 0.5 * lamda

pi = [pr(i, eta) for i in xrange(numi)]

pi.append(1 - reduce(su, pi))

v = [0 for x in xrange(numi + 1)]

blocks = stringpart(binin, num)

blocklen = len(blocks[0])

counts = [occurances(i,mat) for i in blocks]

counts2 = [(numi if xx > numi else xx) for xx in counts]

for i in counts2: v[i] = v[i] + 1

chisqr = reduce(su, [(v[i]-bign*pi[i])** 2 / (bign*pi[i])

for i in xrange(numi + 1)])

pval = spc.gammaincc(0.5*numi, 0.5*chisqr)

return pval

def maurersuniversalstatistictest(binin,l=7,q=1280):

ru = [

[0.7326495, 0.690],

[1.5374383, 1.338],

[2.4016068, 1.901],

[3.3112247, 2.358],

[4.2534266, 2.705],

[5.2177052, 2.954],
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[6.1962507, 3.125],

[7.1836656, 3.238],

[8.1764248, 3.311],

[9.1723243, 3.356],

[10.170032, 3.384],

[11.168765, 3.401],

[12.168070, 3.410],

[13.167693, 3.416],

[14.167488, 3.419],

[15.167379, 3.421],

]

blocks = [int(li, 2) + 1 for li in stringpart(binin, l)]

k = len(blocks) - q

states = [0 for x in xrange(2**l)]

for x in xrange(q):

states[blocks[x]-1]=x+1

sumi=0.0

for x in xrange(q,len(blocks)):

sumi+=np.log2((x+1)-states[blocks[x]-1])

states[blocks[x]-1] = x+1

fn = sumi / k

c=0.7-(0.8/l)+(4+(32.0/l))*((k**(-3.0/l))/15)

sigma=c*np.sqrt((ru[l-1][1])/k)

pval = spc.erfc(abs(fn-ru[l-1][0]) / (np.sqrt(2)*sigma))

return pval

def lempelzivcompressiontest1(binin):

i = 1

j = 0

n = len(binin)

mu = 69586.25

sigma = 70.448718

words = []

while (i+j)<=n:
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tmp=binin[i:i+j:]

if words.count(tmp)>0:

j+=1

else:

words.append(tmp)

i+=j+1

j=0

wobs = len(words)

pval = 0.5*spc.erfc((mu-wobs)/np.sqrt(2.0*sigma))

return pval

def lempelzivcompressiontest(binin):

i = 1

j = 0

n = len(binin)

mu = 69586.25

sigma = 70.448718

words = []

while (i+j)<=n:

tmp=binin[i:i+j:]

if words.count(tmp)>0:

j+=1

else:

words.append(tmp)

i+=j+1

j=0

wobs = len(words)

pval = 0.5*spc.erfc((mu-wobs)/np.sqrt(2.0*sigma))

return pval

# test 2.11

def serialtest(binin, m=4):
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n = len(binin)

hbin=binin+binin[0:m-1:]

f1a = [hbin[xs:m+xs:] for xs in xrange(n)]

oo=set(f1a)

f1 = [f1a.count(xs)**2 for xs in oo]

f1 = map(f1a.count,oo)

cou =f1a.count

f2a = [hbin[xs:m-1+xs:] for xs in xrange(n)]

f2 = [f2a.count(xs)**2 for xs in set(f2a)]

f3a = [hbin[xs:m-2+xs:] for xs in xrange(n)]

f3 = [f3a.count(xs)**2 for xs in set(f3a)]

psim1 = 0

psim2 = 0

psim3 = 0

if m >= 0:

suss = reduce(su,f1)

psim1 = 1.0 * 2 ** m * suss / n - n

if m >= 1:

suss = reduce(su,f2)

psim2 = 1.0 * 2 ** (m - 1) * suss / n - n

if m >= 2:

suss = reduce(su,f3)

psim3 = 1.0 * 2 ** (m - 2) * suss / n - n

d1 = psim1-psim2

d2 = psim1-2 * psim2 + psim3

pval1 = spc.gammaincc(2 ** (m - 2), d1 / 2.0)

pval2 = spc.gammaincc(2 ** (m - 3), d2 / 2.0)

return [pval1, pval2]

def cumultativesumstest(binin):

n = len(binin)

ss = [int(el) for el in binin]

sc = map(sumi, ss)
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cs = np.cumsum(sc)

z = max(abs(cs))

ra = 0

start = int(np.floor(0.25 * np.floor(-n / z) + 1))

stop = int(np.floor(0.25 * np.floor(n / z) - 1))

pv1 = []

for k in xrange(start, stop + 1):

pv1.append(sst.norm.cdf((4 * k + 1) * z / np.sqrt(n)) -

sst.norm.cdf((4 * k - 1) * z / np.sqrt(n)))

start = int(np.floor(0.25 * np.floor(-n / z - 3)))

stop = int(np.floor(0.25 * np.floor(n / z) - 1))

pv2 = []

for k in xrange(start, stop + 1):

pv2.append(sst.norm.cdf((4 * k + 3) * z / np.sqrt(n)) -

sst.norm.cdf((4 * k + 1) * z / np.sqrt(n)))

pval = 1

pval -= reduce(su, pv1)

pval += reduce(su, pv2)

return pval

def cumultativesumstestreverse(binin):

pval=cumultativesumstest(binin[::-1])

return pval

def pik(k,x):

if k==0:

out=1-1.0/(2*np.abs(x))

elif k>=5:

out=(1.0/(2*np.abs(x)))*(1-1.0/(2*np.abs(x)))**4

else:

out=(1.0/(4*x*x))*(1-1.0/(2*np.abs(x)))**(k-1)

return out
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def randomexcursionstest(binin):

xvals=[-4, -3, -2, -1, 1, 2, 3, 4]

ss = [int(el) for el in binin]

sc = map(sumi,ss)

cumsum = np.cumsum(sc)

cumsum = np.append(cumsum,0)

cumsum = np.append(0,cumsum)

posi=np.where(cumsum==0)[0]

cycles=([cumsum[posi[x]:posi[x+1]+1] for x in xrange(len(posi)-1)])

j=len(cycles)

sct=[]

for ii in cycles:

sct.append(([len(np.where(ii==xx)[0]) for xx in xvals]))

sct=np.transpose(np.clip(sct,0,5))

su=[]

for ii in xrange(6):

su.append([(xx==ii).sum() for xx in sct])

su=np.transpose(su)

pikt=([([pik(uu,xx) for uu in xrange(6)]) for xx in xvals])

# chitab=1.0*((su-j*pikt)**2)/(j*pikt)

chitab=np.sum(1.0*(np.array(su)-j*np.array(pikt))**2

/(j*np.array(pikt)),axis=1)

pval=([spc.gammaincc(2.5,cs/2.0) for cs in chitab])

return pval

def getfreq(linn, nu):

val = 0

for (x, y) in linn:

if x == nu:

val = y

return val

def randomexcursionsvarianttest(binin):
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ss = [int(el) for el in binin]

sc = map(sumi, ss)

cs = np.cumsum(sc)

li = []

for xs in sorted(set(cs)):

if np.abs(xs) <= 9:

li.append([xs, len(np.where(cs == xs)[0])])

j = getfreq(li, 0) + 1

pval = []

for xs in xrange(-9, 9 + 1):

if not xs == 0:

# pval.append([xs, spc.erfc(np.abs(getfreq(li, xs) - j) /

np.sqrt(2 * j * (4 * np.abs(xs) - 2)))])

pval.append(spc.erfc(np.abs(getfreq(li, xs) - j) /

np.sqrt(2 * j * (4 * np.abs(xs) - 2))))

return pval

def aproximateentropytest(binin, m=10):

n = len(binin)

f1a = [(binin + binin[0:m - 1:])[xs:m + xs:] for xs in xrange(n)]

f1 = [[xs, f1a.count(xs)] for xs in sorted(set(f1a))]

f2a = [(binin + binin[0:m:])[xs:m + 1 + xs:] for xs in xrange(n)]

f2 = [[xs, f2a.count(xs)] for xs in sorted(set(f2a))]

c1 = [1.0 * f1[xs][1] / n for xs in xrange(len(f1))]

c2 = [1.0 * f2[xs][1] / n for xs in xrange(len(f2))]

phi1 = reduce(su, map(logo, c1))

phi2 = reduce(su, map(logo, c2))

apen = phi1 - phi2

chisqr = 2.0 * n * (np.log(2) - apen)

pval = spc.gammaincc(2 ** (m - 1), chisqr / 2.0)

return pval

def matrank(mat): ## old function, does not work as advertized -

gives the matrix rank, but not binary
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u, s, v = np.linalg.svd(mat)

rank = np.sum(s > 1e-10)

return rank

def mrank(matrix): # matrix rank as defined in the NIST specification

m=len(matrix)

leni=len(matrix[0])

def proc(mat):

for i in xrange(m):

if mat[i][i]==0:

for j in xrange(i+1,m):

if mat[j][i]==1:

mat[j],mat[i]=mat[i],mat[j]

break

if mat[i][i]==1:

for j in xrange(i+1,m):

if mat[j][i]==1: mat[j]=[mat[i][x]^mat[j][x]

for x in xrange(leni)]

return mat

maa=proc(matrix)

maa.reverse()

mu=[i[::-1] for i in maa]

muu=proc(mu)

ra=np.sum(np.sign([xx.sum() for xx in np.array(mu)]))

return ra

def binarymatrixranktest(binin,m=32,q=32):

p1 = 1.0

for x in xrange(1,50): p1*=1-(1.0/(2**x))

p2 = 2*p1

p3 = 1-p1-p2;

n=len(binin)

u=[int(el) for el in binin] # the input string as numbers,

to generate the dot product
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f1a = [u[xs*m:xs*m+m:] for xs in xrange(n/m)]

n=len(f1a)

f2a = [f1a[xs*q:xs*q+q:] for xs in xrange(n/q)]

# r=map(matrank,f2a)

r=map(mrank,f2a)

n=len(r)

fm=r.count(m);

fm1=r.count(m-1);

chisqr=((fm-p1*n)**2)/(p1*n)+((fm1-p2*n)**2)/(p2*n)+

((n-fm-fm1-p3*n)**2)/(p3*n);

pval=np.exp(-0.5*chisqr)

return pval

def lincomplex(binin):

lenn=len(binin)

c=b=np.zeros(lenn)

c[0]=b[0]=1

l=0

m=-1

n=0

u=[int(el) for el in binin] # the input string as numbers, to generate

the dot product

p=99

while n<lenn:

v=u[(n-l):n] # was n-l..n-1

v.reverse()

cc=c[1:l+1] # was 2..l+1

d=(u[n]+np.dot(v,cc))%2

if d==1:

tmp=c

p=np.zeros(lenn)

for i in xrange(0,l): # was 1..l+1

if b[i]==1:

p[i+n-m]=1

c=(c+p)%2;
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if l<=0.5*n: # was if 2l <= n

l=n+1-l

m=n

b=tmp

n+=1

return l

# test 2.10

def linearcomplexitytest(binin,m=500):

k = 6

pi = [0.01047, 0.03125, 0.125, 0.5, 0.25, 0.0625, 0.020833]

avg = 0.5*m + (1.0/36)*(9 + (-1)**(m + 1)) - (m/3.0 + 2.0/9)/2**m

blocks = stringpart(binin, m)

bign = len(blocks)

lc = ([lincomplex(chunk) for chunk in blocks])

t = ([-1.0*(((-1)**m)*(chunk-avg)+2.0/9) for chunk in lc])

vg=np.histogram(t,bins=[-9999999999,-2.5,-1.5,-0.5,0.5,1.5,2.5,

9999999999])[0][::-1]

im=([((vg[ii]-bign*pi[ii])**2)/(bign*pi[ii]) for ii in xrange(7)])

chisqr=reduce(su,im)

pval=spc.gammaincc(k/2.0,chisqr/2.0)

return pval

def testall(bits):

print ’Length:\t\t\t\t\t’, len(bits)

print

print ’monobitfrequencytest\t\t\t’, monobitfrequencytest(bits)

print ’blockfrequencytest\t\t\t’, blockfrequencytest(bits, 3)

print ’runstest\t\t\t\t’, runstest(bits)

print ’spectraltest\t\t\t\t’, spectraltest(bits)

print ’nonoverlappingtemplatematching\t\t’,

nonoverlappingtemplatematchingtest(bits, ’1001’, 10)

print ’overlapingtemplatematching\t\t’,

overlappingtemplatematchingtest(bits, ’100’, 12, 5)
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print ’serialtest\t\t\t\t’, serialtest(bits, 10)

print ’cumulativesumstest\t\t\t’, cumultativesumstest(bits)

print ’aproximateentropytest\t\t\t’, aproximateentropytest(bits, 4)

print ’randomexcursionsvarianttest\t\t’,

randomexcursionsvarianttest(bits)

print "linearcomplexitytest\t\t\t",linearcomplexitytest(bits,10)

print "binarymatrixranktest\t\t\t",binarymatrixranktest(bits,3,4)

print "lempelzivcompressiontest\t\t",lempelzivcompressiontest(bits)

print "longestrunones10000\t\t",longestrunones10000(bits)

print "maurersuniversalstatistictest\t\t",

maurersuniversalstatistictest(bits,12,5)

print "randomexcursionstest\t\t\t",randomexcursionstest(bits)

return
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